An Investigation of Material Changes Occurring within Mineral Collections

Kathryn Royce, D.Phil.

Natural History Museum, London

the Mineral Susceptibility Database (MSD)

- Consolidates current* research from various scientific fields into one freely accessible location
- ➢ 987 entries
- ➣ 596 mineral species
 - ➤ 10% of IMA approved species**
- Effects of 4 Agents of Change
 - > Improper temperature
 - Improper humidity
 - Light: UV-vis-IR
 - Pollutants

<u>Response</u> Dehydration Hydration Photo-oxidation Oxidation Soluble - Water Soluble - Acid Deliquescence Hygroscopic Colour Change Porous Decomposition Efflorescence Structural Alteration Hydrolysis Other

State Survey at OUMNH

Aim: Confirm alignment between literature & reality

Agreement between experimental data & museum specimens

the Collection

- ➤ ~40,000 specimens
- > ~12,300 unique species
- > c.1650 present
- ➢ T: 16−29°C, RH: 33−65%

the Survey

- > 13,716 specimens
- > 1,049 mineral species
- ALL mineral groups
- Completed in 181 hours over 69 days

the Deterioration Phenomena State Survey Method

Dimple	Rounded	Corrosion	Tarnish	fflorescence	Powder	Crumbling	Flaking	Breakages	Cracks	Dull/Matte	Darker	Lighter	Opacity	olour Change
-	-	•	-	•	-	-	-	•	-	•	•	-	•	-
0	0	1	1	0	0	0	0	0	1	1	0	0	0	1
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
0	0	1	0	0	0	0	0	0	1	1	0	0	0	1
0	0	0	1	0	0	1	0	1	1	0	0	0	0	0
0	0	0	1	0	0	0	0	0	1	1	1	0	0	1
0	0	0	1	0	0	1	0	1	1	1	0	0	0	1
0	0	1	1	0	0	0	0	0	0	0	1	0	0	1
0	0	0	1	0	0	0	0	0	1	1	0	0	0	0
0	0	0	1	0	0	0	0	0	1	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	1	0	0	1
0	0	1	1	0	0	0	0	0	0	0	0	0	0	1
0	0	0	1	1	0	0	0	0	1	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
0	0	0	1	0	0	1	0	0	1	1	0	0	0	1
0	0	0	1	0	0	0	0	0	1	0	0	0	0	0
0	0	0	1	0	0	0	0	1	1	0	0	0	0	0
0	0	0	1	0	0	1	0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0

- > Examine state objectively & quantitatively
 - View signs of change neutrally
- Quickly perform on whole or fraction of collection

Deterioration Phenomena (DP)

- Visually indicative of change to given collection
- Presence/absence only (1 / 0)
 - No determination of extent/severity
 - Increase speed, reduce variability, avoid assigning quantitative values to subjective perception
- Cause of change attributed during data analysis
 - Minimise distraction, interpretational bias,
 & attribution error

Powder

Breakages

Cracks

Dull

Dark

Pale

Opacity

Colour Change

X AutoSave Off 🗄 S · C · A ↓ A → OUNHM-State_Survey-all.xlsx • 🖉 Search

Kathryn Royce 🎳 🛛 🖉

ð

File Home Insert Page Layout Formulas Data Review View Automate Developer Help Power Pivot

Comments 🖻 Share 👻

 \checkmark : $\times \checkmark f_x$ Boracite G107

G1	L07	• : X	$\checkmark f_x$	Boracit	e																									~
	А	В	С	DE	F	G	Н	I	J	К	L	М	Ν	0	Ρ	Q	R	S	Т	U	V	W	Х	Y	Z	AA		AB	AC	
	Hey #	Strunz #	Acc. # (MIN.)	Cabinet awer/Shelf #	# of pt.	Main Min.	Assoc. Min.	Dimpled	Slumped	Corrosion	Tarnish	florescence	Powder	Crumbling	Flaking	Pits	Breakages	Cracks	Dull	Dark	Pale	Opacity	lour Change	olour Change	Other Notes					
1	0 2 1 4	 	21044	7		Colomanita		· ·	· ·		· ·		·	•	·	•	•	_	·	·	·	•	·	Ŭ	•••					_
147	9.5.14	5/1.02-20	21044	22 0	1	Lydroboracite			0	0	0	0	0		0	0	0	1	0	1	0	0	0							_
140	9.3.22	5/1.03-20	21014	22 0	1	Hydroboracite		0	0	0	0	0	0		1	0	0	1	0	1	0	0	0							_
150	9 3 22	5/1.03-20	30364	22 0	1	Hydroboracite		0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	1	realgar: ve	ellow (nara	realgar)	onun	ner surfa) Ce	
151	9322	5/1.03-20	30368	22 0	1	Hydroboracite		0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	realgar. ye		Calgary	on up	per surre		_
152	9.3.22	5/J.03-20	30369	22 o	1	Hydroboracite		0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0							_
153	9.1.6	5/J.04-10	21856	22 o	1	Kernite		0	0	0	0	1	1	0	0	0	0	1	0	0	1	1	0							
154	9.1.6	5/J.04-10	22404	22 o	10+	Kernite		0	0	0	0	1	1	0	0	0	0	1	0	0	1	1	0							_
155	9.1.6	5/J.04-10	27886	22 o	1	Kernite		0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0							
156	9.1.6	5/J.04-10	30356	22 o	1	Kernite		0	0	0	0	1	1	0	0	0	0	0	0	0	1	1	0							
157	9.1.6	5/J.04-10	30357	22 o		Kernite																			temp. rem	. For cry	/stals r	naturally	display - Ja	an.
158	9.1.14	5/J.05-10	21204			Larderellite																								
159	9.3.20	5/J.05-30	22902	22 n	1	Probertite	realgar	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0							
160	9.3.20	5/J.05-30	22903	22 n	1	Probertite	realgar	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0							
161	9.3.20	5/J.05-30	22904	22 n	1	Probertite	realgar	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0							
162	9.3.20	5/J.05-30	30367	22 n	1	Probertite		0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	0							
163	10.1.8-10	5/K.04-10	28853			Hilgardite	boracite																							
164	10.1.8-10	5/K.04-10	28861	22 o	4	Hilgardite	boracite	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0							_
165	9.3.31	5/K.06-20	30374	22 p	1	Tunellite		0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0							
166	9.3.31	5/K.06-20	30375	22 p	1	Tunellite		1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0							
167	9.3.31	5/K.06-20	30376	22 p	1	Tunellite		0	0	0	0	1	ſ	_																
168	9.3.31	5/K.06-20	30377	22 p	1	Tunellite		0	0	0	0	0		Ex		m	ple	9 (of	a	C	or	nr	olete	surve	y sr	pre	adst	leet	
169	9.2.05	5/K.08-10	30264	22 p	1	Preobrazhenskite		0	0	0	0	1		-																/ -
	•	E&A S&S	2x 08	80H	Carb	. Halides Sulfate	es T,C,&M I&	B	P,A,8	٧٧	Sil	ica	Sil	licate	S	Orga	anics		Othe	er th	ings		+							Þ
Read	dy 💽 🏾	Accessibility	: Investigate																					Count: 46				-	+	100%

Ready 🐻 🛠 Accessibility: Investigate

Percent DP (%DP) Patterns

	Averag	ge													Type of deterioration	
MINERAL	% Dim	% Tarr	% Effle	% Pov	% Crui	% Flak	% Pits	% Brea	% Crac	% Dull	% Dar	% Pale	% Opa	% Colo	1st Order	2nd Order
Vonsenite	0%	0%	0%	0%	0%	0%	0%	0%	100%	25%	0%	0%	0%	0%	Physical forces	Surfical Oxidation
Fluoborite	0%	0%	67%	0%	0%	0%	0%	0%	67%	0%	0%	0%	0%	0%	Efflorescence	_
Berborite	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	_	_
Wightmanite	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	_	_
Canavesite	0%	100%	0%	0%	0%	0%	0%	0%	100%	0%	0%	0%	0%	100%	Surfical Oxidation	—
Sulfoborite	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	_	—
Szaibelyite	0%	0%	50%	0%	0%	0%	0%	0%	50%	0%	0%	50%	0%	0%	Efflorescence	—
Sussexite	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	_	—
Pinnoite	0%	0%	0%	100%	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	Physical forces	_
Kurnakovite	0%	0%	100%	100%	0%	0%	0%	0%	50%	0%	0%	100%	100%	0%	Efflorescence	_
Inderite	0%	0%	100%	100%	0%	0%	0%	0%	100%	0%	0%	100%	100%	0%	Efflorescence	_
Inderborite	0%	0%	0%	100%	0%	0%	0%	0%	100%	0%	0%	0%	0%	33%	Physical forces	—
Meyerhofferite	0%	0%	0%	100%	75%	0%	0%	50%	25%	0%	0%	0%	0%	0%	Physical forces	—
Inyoite	0%	0%	0%	100%	0%	0%	0%	100%	0%	0%	100%	0%	0%	0%	Physical forces	—
Tincalconite	0%	0%	0%	100%	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	Physical forces	-
Borax	0%	0%	0%	100%	33%	17%	0%	0%	17%	0%	0%	0%	0%	67%		
Boracite	29%	0%	5%	0%	0%	0%	0%	3%	8%	0%	34%	0%	0%	0%	_	surface wetting
Ulexite	0%	0%	7%	64%	36%	7%	0%	0%	21%	0%	64%	7%	0%	14%		
Colemanite	29%	0%	18%	12%	6%	6%	0%	12%	35%	0%	12%	0%	0%	0%	_	surface wetting
Hydroboracite	0%	0%	20%	0%	20%	20%	20%	0%	100%	0%	40%	0%	0%	20%	Physical forces	_
Kernite	0%	0%	75%	100%	0%	25%	0%	0%	50%	0%	0%	75%	75%	0%	Dehydration	—
Probertite	0%	0%	0%	50%	50%	0%	0%	0%	50%	0%	25%	0%	0%	0%	Physical forces	—
Hilgardite	0%	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	Physical forces	-
Tunellite	25%	0%	25%	25%	0%	0%	0%	0%	50%	0%	0%	25%	25%	0%	Physical forces	surface wetting
Preobrazhenskite	0%	0%	100%	0%	0%	0%	0%	0%	100%	0%	100%	0%	0%	0%	Efflorescence	
Braitschite-(Ce)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	_	_
Hambergite	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	_	-
Total	13%	1%	16%	29%	11%	4%	1%	4%	34%	1%	22%	10%	7%	7%	_	Physical forces

 1^{st} order > 50% 2^{nd} order < 50% **Conditional Formatting Key**

75–100%	Red
50–74%	Orange
25–49%	Yellow
0–24%	N/A

8

%DP Patterns Example: Pyrite

DP	%DP
Corrosion	11%
Tarnish	86%
Efflorescence	23%
Powder	7%
Crumbling	21%
Flaking	5%
Breakages	9%
Cracks	56%
Dull	78%
Dark	57%
Colour Change	33%
# of Specimens	1,274*

2nd Order: Oxidation at Depth Signs of Pyrite Decay < 25%

- ➢ Efflorescence
- Powder
- > Crumbling
- Breakages

* Data from cross-museum pyrite survey, not just OUMNH

Predominant Reaction Type = Physical Forces

- > Similar %DP patterning across most mineral groups
- \geq 2nd order = physical forces => cracks in 26-46% of specimens

	Flements	Sulfides &		Ovides &	Tungstates,		lodates &		Phosphates,									
Mineral Group	& Alloys	Sulfosalts	Halides	Hydroxides	Molybdates	Carbonates	Borates	Sulfates	Vanadates	Silica	Ortho	Soro	Ring	Chain	Sheet	ramework	Total	
Dimpled	0%	0%	18%	2%	1%	3%	13%	7%	1%	8%	5%	0%	2%	1%	1%	1%	4%	
Rounded	0%	0%	9%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	1%	
Corrosion	9%	15%	4%	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	2%	
Tarnish	39%	50%	7%	18%	9%	1%	1%	2%	3%	5%	1%	2%	1%	1%	1%	0%	9%	
Efflorescence	2%	5%	15%	5%	11%	18%	16%	25%	18%	1%	2%	1%	1%	1%	2%	1%	8%	
Powder	2%	6%	3%	7%	3%	5%	29%	20%	9%	5%	2%	2%	4%	5%	5%	3%	7%	
Crumbling	9%	16%	15%	11%	14%	24%	11%	27%	17%	9%	5%	10%	12%	6%	8%	7%	13%	
Flaking	3%	4%	1%	3%	1%	0%	4%	3%	3%	0%	4%	3%	6%	10%	19%	2%	4%	
Breakages	4%	4%	2%	5%	8%	5%	4%	9%	4%	7%	3%	5%	5%	5%	6%	4%	5%	
Cracks	7%	42%	20%	36%	31%	41%	34%	41%	43%	26%	27%	36%	31%	36%	46%	27%	33%	
Dull	40%	56%	10%	12%	14%	3%	1%	1%	1%	4%	1%	1%	1%	1%	2%	0%	9%	
Dark	33%	25%	14%	11%	18%	24%	22%	22%	10%	14%	5%	5%	4%	9%	8%	16%	15%	
Pale	1%	2%	1%	0%	1%	3%	10%	7%	2%	0%	0%	0%	0%	0%	1%	0%	2%	
Opacity	0%	0%	6%	0%	0%	1%	7%	7%	0%	3%	2%	5%	3%	1%	1%	0%	2%	
Colour Change	13%	22%	4%	6%	2%	3%	7%	6%	1%	1%	1%	1%	0%	0%	0%	1%	4%	
ADP	2	2	1	1	1	1	2	2	1	1	1	1	1	1	1	1	1	
1st Order	_	surficial oxidation	—	_	_	_	—	—	_	—	—	—	—	—	—	_	—	
2nd Order	surficial oxidatio	physical forces	dehydration						phy	sical force	es							
# of specimens	996	2449	564	1523	270	831	136	521	1315	220	855	440	345	723	795	1277	13260	
# of species	23	115	43	127	15	62	34	78	178	2	61	57	28	77	75	71	1046	

Predominant Reaction Type = Physical Forces

Reaction Type	All Species	25+ Specimens
Colour Change	1%	0%
Surface Wetting	1%	1%
Dehydration	1%	0%
Efflorescence	6%	5%
Surficial Oxidation	7%	11%
Oxidation at Depth	1%	2%
Pollutant-Induced Deterioration	1%	2%
Pollutant Deposition	3%	6%
Physical Forces	26%	35%
None	53%	38%

- ~1/3 of all specimens
 exhibit cracking
- > All other DP occur in $< \frac{1}{5}$ of surveyed specimens

Sources for Physical Forces

- > Improper handling & accidents
- > Inherent fragility or friability of specimen
- In-drawer movements: jumping, rocking, rolling, sliding
 - Rough drawer movement
 - Doesn't slide easily
 - Jerky movements to open/shut
 - Drawers not trayed out => trays slide
 - Inadequate support for specimens
 - > Too large unit trays
 - Specimen placed on faces prone to movement

Easy Fixes for Physical Forces

- > Training re. handling & supporting specimens
- > Awareness of specimen's properties
- > Repair drawers
- Oil/sand runners
- Ensure drawers supported when opened
- Fully tray-out drawers or line with non-slip material
- Place specimens on face that produces least movement
- Provide support for fragile
 & movement-prone specimens

What's with the pollutant deposition?

Reaction Type	All Species	25+ Specimens
Colour Change	1%	0%
Surface Wetting	1%	1%
Dehydration	1%	0%
Efflorescence	6%	5%
Surficial Oxidation	7%	11%
Oxidation at Depth	1%	2%
Pollutant-Induced Deterioration	1%	2%
Pollutant Deposition	3%	6%
Physical Forces	26%	35%
None	53%	38%

What is it though?

➤ Dark & soot-like

- On older specimens (~ pre-1980) across ALL mineral groups
- Unknown composition
- \succ Likely combination of:
 - > Dust
 - Outdoor pollutants
 (e.g. automotive exhaust, coal)
 - ➤ Cigarette smoke

Could be affecting specimen deterioration

 Cleaning required to assess impact

What is it though?

Conclusions

- Survey confirmed solubility & changes in hydration/oxidation state are indeed prevalent in museum collections
 - Not overrepresented in MSD
- Collections may contain more species susceptible to other reaction types (e.g., photo-induced)
 - Nature of museum storage makes it difficult to identify
- > Physical forces is predominate reaction type
 - Can affect every specimen
 - > Need to ensure proper mitigation

Thank you for listening!

This work was an output of a collaborative doctoral research project, supported by collaborators from the following institutions:

- University of Oxford, School of Geography & the Environment Heather Viles
- Oxford University Museum of Natural History Duncan Murdock, Eliza Howlett
- National Museum Cardiff Jana Horak, Tom Cotterell, Andrew Haycock
- National Museums Liverpool Christian Baars
- BSRIA Ltd. Tom Gagarin
- OR3D James Earl

The PhD project was part of the Science and Engineering in Arts, Heritage, and Archaeology Centre for Doctoral Training (SEAHA CDT).

Funding was provided by:

- The Engineering and Physical Sciences Research Council (EPSRC)
- The Barbara Whatmore Trust
- The Pilgrim Trust
- The National Conservation Service

Questions?

kathryn.royce@nhm.ac.uk

http://mineralcare.web.ox.ac.uk