An Investigation of Analytical Methods Applied to Mineralogical Collection Assessments

Kathryn Royce Schronk

$Minerals \neq Stable Objects$

1992 – 350 of 3,500 known minerals Nov. 2018 – ? of 5,400 identified minerals *How many more are vulnerable?*

Melanterite & Chalcanthite

Ferrohexahydrate – $FeSO_4 \cdot 6H_2O$ Siderotil – $FeSO_4 \cdot 5H_2O$ Rozenite – $FeSO_4 \cdot 4H_2O$ Szomolnokite – $FeSO_4 \cdot H_2O$

Dehydrate

Bonattite $- CuSO_4 \cdot 3H_2O$ Poitevinite $- CuSO_4 \cdot H_2O$ Chalcocyanite $- CuSO_4$

Dehydration

Equilibrium RH for Chalcanthite-Bonattite & Melanterite-Rozenite

(after Chou et al. 2002)

Research Questions

Does the short-term dehydration of melanterite and chalcanthite produce chemically or visually detectable change?

Do synthetic crystals present changes similar to those observed in museum specimens?

What analytical methods are optimal for determining physical and chemical changes to mineral specimens? Which would be most applicable to the average museum, in terms of efficacy and cost benefit?

Analysis

Determine methods for identifying & monitoring change

- Weight measurements
- Photography
- X-radiography
- CT scans •

• Colorimetry

• SEM

• XRD

• EDX

- FT-IR
- Raman

Weight Measurements

Average of 3 readings | accuracy = ± 0.01 mg

Melanterite

- Samples = significant change (>10%)
- Controls = minimal change (<0.25%)

Chalcanthite: minimal change compared to melanterite

Melanterite						
	Sample #	Δ Weight (g)	Δ Weight (%)			
Sample	M1	-2.3287	61.84%			
	M3	-0.3533	10.57%			
	M5	-0.6635	27.49%			
	M7	-0.8511	25.19%			
	M9	+0.3356	13.50%			
Control	M2	-0.0045	0.11%			
	M4	-0.0056	0.19%			
	M6	-0.0051	0.24%			
	M8	-0.0037	0.17%			

Chalcanthite

	Sample #	∆ Weight (g)	Δ Weight (%)	
	C1	-0.0208	0.26%	
	C2	-0.0574	0.81%	
	C3	-0.0490	0.60%	
	C4	-0.2965	1.87%	
əldr	C5	-0.1230	1.01%	
Sam	C6	-0.0893	0.93%	
07	C7	-0.0578	0.58%	
	C8	-0.0891	0.45%	
	C9	-0.0805	0.70%	
	C10	-0.1502	1.20%	
	C11	-0.1654	0.96%	
	C12	-0.0077	0.15%	
	C13	-0.0221	0.29%	
_	C14	-0.0140	0.19%	
itro	C15	-0.0346	0.71%	
Con	C16	-0.0201	0.30%	
Ŭ	C17	-0.0034	0.05%	
	C18	-0.0144	0.20%	
	C19	-0.0164	0.35%	
	C20	-0.0586	0.78%	

Colorimetry: Melanterite

	Melanterite	ΔE* _{ab} (D65)		
	M1	58.43		
	M3	57.85		
S	M5	56.96		
ample	M7	63.51		
S	M9	58.40		
	Mean	59.03		
	Standard Deviation	2.30		
	M2	3.78		
	M4	4.50		
trols	M6	18.38		
Con	M8	7.90		
	Mean	8.64		
	Standard Deviation	5.83		

Colorimetry: Chalcanthite

	Chalcanthite	ΔE [≁] ab(D65)		
	C1	10.27		
	C2	2.38		
	C3	8.28		
	C4	7.35		
S	C5	7.99		
ble	C6	3.18		
Sam	C7	11.92		
0,	C8	16.99		
	С9	18.64		
	C10	4.85		
	Mean	9.19		
	Standard Deviation	5.16		
	C11	1.51		
	C12	7.75		
	C13	3.01		
	C14	12.57		
S	C15	0.85		
trol	C16	10.68		
loo	C17	3.96		
U	C18	8.58		
	C19	8.99		
	C20	22.31		
	Mean	8.02		
	Standard Deviation	6.07		

X-radiography: M1 before & after

CT scans

4.5 r

Before

After

4.5 mm

ter

M1

2D slices

」 10 mm

10 mm

C8

192.1

CT scans: M1 3D overlay

600µm

Dehydrated

100µm

300µm

SEM: Chalcanthite

EDX

XRD: Synthetic Minerals

XRD: Museum Specimens

Minerals misidentified at accession

ample #	Accession #	Listed Mineral	XRD Results
3654	83.41G.M8476	chalcanthite	siderotil & melanterite
3655	83.41G.M8504	pisanite	szomolnokite, siderotil, melanterite
3656	26.157.GR1	melanterite	hexahydrite, epsomite, jurbanite
3684	26.151.GR_	melanterite	kieserite, hexahydrite
3685	83.41G.M8482	chalcanthite	szomolnokite
3686	26.157.GR1	melanterite	hexahydrite, epsomite
3687	26.157.GR1	melanterite	hexahydrite, epsomite
3688	83.41G.M8481	chalcanthite	siderotil
3689	83.41G.M8479	chalcanthite	kieserite, siderotil, melanterite
3690	83.41G.M8479	chalcanthite	siderotil, melanterite

FT-IR

Melanterite v. Chalcanthite

- Larger, broader H₂O stretching band
- Larger H₂O bending peak
- Doesn't have H₂O liberation peak
- Different pattern in 'fingerprint' region

M5

- Resolution & shift in H₂O stretching peaks
- Shoulder resolved in H₂O bending peak
- Different pattern in 'fingerprint' region

Chalcanthite

Melanterite

Raman Spectroscopy

Chalcanthite

$SO_4^{-2}(v_1)$ versus H_2O stretch

- Heights: chalcanthite = 30%; melanterite & rozenite = 50%
- Shift: chalcanthite = 2900-3600 cm-1; melanterite = 3100-3650; rozenite = 3200-3650
- Distance: further apart => easier to break H-bonds => more readily dehydrates

Melanterite

Assessment of Methods for Museum Use

- Most pragmatic at present = colorimetry*, photography*, XRD, FT-IR, Raman
- CT has potential

*requires refinement

	Identification	Monitoring	Access	Time/ Sample	Cost Effective	Sampling Required	Knowledge Required	Standalone Method	Practicality
Weight Measurements	0	2	3	1	3	0	1	0	1
Colorimetry	0	2	2	1	3	0	2	3	2
Photography	0	3	3	1-3	1-3	0	1-2	3	3
СТ	0	2	1	3	1	0-2	2	2	1
X-radiography	0	2	1	2	1	0-2	2	1	1
SEM	2	0	2	3	1	0-2	2	1	1
EDX	3	3	1	1	1	0-2	2	0	1
XRD	3	3	2	2	2	1	2-3	2	2
FT-IR	3	3	2-3	1	3	1	1-2	2	3
Raman	3	3	1-2	2	2	1	1-2	2	2

Dehydrating melanterite and chalcanthite produced detectable change

Inconclusive whether synthetic crystals present changes similar to those of natural specimens

All methods can be used to determine changes to minerals

Colorimetry, photography, XRD, FT-IR, & Raman spectroscopy presently most pragmatic for average museum

Areas of Further Research

October-December 2019

- Defining & quantifying damage
 - Species-specific?
- Detailed review of NMC mineral store
 - Visual identification of sensitive minerals
 - Narrow focus
- Assessment of sample acquisition

2020-2022

- Rehydration study of melanterite & chalcanthite
- Long-term study on use of Parafilm as moisture barrier
- Additional analytical techniques
 - ESEM
 - XRF
- Utilizing digital technologies
 - 3D scanning / photogrammetry
 - AI

ThankYou

- Dr. Heather Viles, University of Oxford
- Dr. Christian Baars, Dr. Jana Horak, Tom Cotterell, Amanda Valentine-Baars, National Museum Wales Cardiff
- James Earl, James Appleby, Robert Wells, OR3D
- David Howell, Weston Library, University of Oxford
- **Prof. Tony Parker**, Rutherford-Appleton Laboratories
- Chris Doherty, University of Oxford

— 3654 **—** 3655 **—** 3689 **—** 3690

— 3684 **—** 3689

— 3656 **—** 3684 **—** 3686 **—** 3687

— 3656 **—** 3686 **—** 3687

----- Seed Crystal ------ Various Samples ------ C2 ----- C11

Batch 3 Seed Crystal Batch 2 Seed Crystal M6 M6

References

- Blount, A.M. 1993. Nature of the alterations which form on pyrite and marcasite during collection storage. *Collection Forum*, 9 (1), 1-16.
- Chou, I.M., Seal, I.R., and Hemingway, B.S., 2002. Determination of melanterite-rozenite and chalcanthite-bonattite equilibria by humidity measurements at 0.1 MPa. *American Mineralogist*, 87 (1), 108–114.
- Chou, I.M., Seal, R.R., and Wang, A., 2013. The stability of sulfate and hydrated sulfate minerals near ambient conditions and their significance in environmental and planetary sciences. *Journal of Asian Earth Sciences*, 62, 734–758.
- Howie, F.M.P., 1992. The Care and Conservation of Geological Material: minerals, rocks, meteorites, and lunar finds. Butterworth-Heinemann.
- Jambor, J.L., Nordstrom, D.K., and Alpers, C.N., 2000. Metal-sulfate Salts from Sulfide Mineral Oxidation. *Reviews in Mineralogy and Geochemistry*, 40 (1), 303–350.
- Waller, R., 1992. Temperature- and humidty-sensitive mineralogical and petrological specimens. *In*: F.M. Howie, ed. *The Care and Conservation of Geological Materials: Minerals, Rocks, Meteorites and Lunar Finds*. Oxford: Butterworth-Heinemann, 25–50.

Spectral References

- Apopei, A.I., Buzgar, N., Damian, G., and Buzatu, A., 2014. The Raman study of weathering minerals from the Coranda-Hondol open pit (Certej gold-silver deposit) and their photochemical degradation products under laser irradiation. *Canadian Mineralogist*, 52 (6), 1027–1038.
- Berger, J., 1976. Infrared and Raman spectra of CuSO4*5H2O, CuSO4*5D2O, and CuSeO4*5H2O. Journal of Raman Spectroscopy, 5, 103–144.
- Bissengaliyeva, M., Ogorodova, L., Vigasina, M., Mel'Chakova, L., Kosova, D., Bryzgalov, I., and Ksenofontov, D., 2016. Enthalpy of formation of natural hydrous copper sulfate: Chalcanthite. *Journal of Chemical Thermodynamics*, 95, 142–148.
- Bissengaliyeva, M.R., Bekturganov, N.S., Gogol, D.B., and Taimassova, S.T., 2017. Low-temperature heat capacity and thermodynamic functions of natural chalcanthite. *Journal of Chemical Thermodynamics*, 111, 199–206.
- Buzatu, A., Dill, H.G., Buzgar, N., Damian, G., Maftei, A.E., and Apopei, A.I., 2016. Efflorescent sulfates from Baia Sprie mining area (Romania) Acid mine drainage and climatological approach. *Science of the Total Environment*, 542, 629–641.
 - Chio, C.H., Sharma, S.K., and Muenow, D.W., 2005. Micro-Raman studies of hydrous ferrous sulfates and jarosites. *Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy*, 61 (10), 2428–2433.
 - Chio, C.H., Sharma, S.K., and Muenow, D.W., 2007. The hydrates and deuterates of ferrous sulfate (FeSO4): a Raman spectroscopic study. *Journal of Raman Spectroscopy*, 38, 87–99.

Spectral References

- Fu, X., Yang, G., Sun, J., and Zhou, J., 2012. Vibrational spectra of copper sulfate hydrates investigated with low-temperature raman spectroscopy and terahertz time domain spectroscopy. *Journal of Physical Chemistry A*, 116 (27), 7314–7318.
- Gadsden, J. A. 1975. *Infrared Spectra of Minerals and Related Inorganic Compounds*. London: Butterworths & Co. Ltd.
- Hayez, V., Guillaume, J., Hubin, A., and Terryn, H., 2004. Micro-Raman spectroscopy for the study of corrosion products on copper alloys: setting up of a reference database and studying works of art. *Journal of Raman Spectroscopy*, 35 (89), 732–738.
- Liu, D. and Ullman, F.G., 1991. Raman spectrum of CuSO4 · 5H2O single crystal. *Journal of Raman Spectroscopy*, 22 (9), 525–528.
- Majzlan, J., Alpers, C.N., Koch, C.B., McCleskey, R.B., Myneni, S.C.B., and Neil, J.M., 2011. Vibrational, X-ray absorption, and Mössbauer spectra of sulfate minerals from the weathered massive sulfide deposit at Iron Mountain, California. *Chemical Geology*, 284 (3–4), 296–305.
 - Makreski, P., Jovanovski, G., and Dimitrovska, S., 2005. Minerals from Macedonia: XIV. Identification of some sulfate minerals by vibrational (infrared and Raman) spectroscopy. *Vibrational Spectroscopy*, 39 (2), 229–239.

Spectral References

 Odin, G.P., Vanmeert, F., Farges, F., Gand, G., Janssens, K., Romero-Sarmiento, M.F., Steyer, J.S., Vantelon, D., and Rouchon, V., 2015. Alteration of fossil-bearing shale (Autun, France; Permian), part II: Monitoring artificial and natural ageing by combined use of S and Ca K-edge XANES analysis, Rock-Eval pyrolysis and FTIR analysis. *Annales de Paleontologie*, 101 (3), 225–239.

- Peterson, R.C. and Grant, A.H., 2005. Dehydration and crystallization reactions of secondary sulfate minerals found in mine waste: In situ powder-diffraction experiments. *Canadian Mineralogist*, 43 (4), 1171–1181.
- Reddy, S.N., Rao, P.S., Ravikumar, R.V.S.S.N., Reddy, B.J., and Reddy, Y.P., 2001. Spectral investigations on melanterite mineral from France. *Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy*, 57 (6), 1283–1287.
- Salisbury, J.W., Walter, L.S., Vergo, N., and D'Aria D.M. 1991. Infrared (2.1-25μm) Spectra of Minerals. Baltimore: Johns Hopkins University Press
- Socrates, G. 2001. *Infrared and Raman Characteristic Group Frequencies: Tables and Charts*. 3rd ed. Chichester: John Wiley & Sons, Ltd.