Vulnerability of mineral collections to indoor environments – a synopsis

Kathryn Royce, D.Phil. Candidate, University of Oxford

Mineral Deterioration \bigvee

> manifest in a variety of ways:

- colour change or loss
- corrosion / oxidation
- > cracking
- > crumbling
- dehydration / hydration
- deliquescence
- > efflorescence
- ➤ fracture
- largely considered as damage
 negatively effects integrity, value, & use

Susceptibility

\succ governed by:

- 1. ambient conditions
- 2. physical & chemical properties
 - Conditions favourable for stability
 - response / change to unfavourable conditions
- inherent, secondary property
 expression dependent on likelihood of exposure to an agent
 degree = likelihood x effect

the Systematic Display Gallery at the Natural History Museum, London

Susceptibility in Heritage Contexts

- determines which hazards pose deterioration risks*
- ➢ informs storage & display conditions*

10 Agents of Change**

- Incorrect Humidity
 Incorrect Temperature
 Light (vis & UV)
 Pollutants
- Physical Forces
 Water
 Fire
 Pests
 Criminals
 Dissociation

* Royce, Baars, & Cotterell 2021. <u>The Geological Curator</u>, 11 (5), 355-360. ** ICCROM (Pedersoli et al.) 2016.

<u>A Guide to Risk Management of Cultural Heritage</u>, p. 27

the Indoor Environment

- ➤ visible light & UV
- ➤indoor pollutants: particulates, aerosols

Covers 'extremes' that could occur during: > equipment & infrastructure failure

- ➤ unusual weather
- ➢ flooding
- \succ localised heating by spotlights

as well as buildings without insulation or HVAC

Mineral Susceptibility Database

- Comprehensive resource for assessing conditions required by mineral objects & collections
- Consolidates current research from various scientific fields
- > One freely accessible location
 - Improve access to reliable information

By being a repository of interdisciplinary research, the Database:

- 1. encourages informed decision making,
- 2. increases awareness of which disciplines & institutions are performing relevant research,
- 3. exposes additional research applications & opportunities,
- 4. advocates cross-disciplinary research & communication.

Facts & Figures

- > 596 minerals
- >987 entries
- ▶ 10% of total mineral species
- ▶ 17% of species in Hey's CIM
- Some mineral groups better represented than others

Outer Ring: # in Hey's CIM Inner Ring: # in MSD

- Elements & Alloys
- Sulfides
- Sulfosalts
- Oxides & Hydroxides
- Halides
- Borates
- Carbonates
- Nitrates
- Silicates
- Phosphates
- Sulfates

Other

Water Predominance

Entries: Agent of Change

Agent	#	%
Water	662	67
Pollutants	158	16
Light	134	14
Temperature	23	2
Oxygen	10	1

Response	<u>Total</u>	<u>Percent (%)</u>
Dehydration	164	17%
Hydration	74	8%
Photo-oxidation	69	7%
Oxidation	140	14%
Soluble - Water	139	14%
Soluble - Acid	105	11%
Deliquescence	83	8%
Hygroscopic	35	4%
Colour Change	36	4%
Porous	25	3%
Decomposition	24	2%
Efflorescence	10	1%
Structural Alteration	6	1%
Hydrolysis	4	0.4%
Other	69	7%

 \succ MSD = reflection of published knowledge

Hydration & oxidation state changes are common & important reactions that occur under atmospheric conditions

 \succ Is this a true reflection of reality?

MSD Aiding Future Research

Existing entries & references evidence:

- \succ Knowledge gaps \rightarrow research opportunities
 - Reaction types & details (i.e., parameters & products)
- ➤ Current research hotspots (e.g., sulfates → Martian research)
 ➤ Institutions & individuals performing research

Hey Number	Mineral Name	Chemical Formula	Conditions	Response	Appearance	Alterations	References
8.5.2	calomel	$[Hg_2]^{2+}Cl_2$	light	disproportionation		to metallic mercury & mercuric chloride	Neiman et al. 2015
8.5.3	terlinguaite	Hg ₂ OCI	light	surfical photo-oxidation	yellow: olive green		Nassau 1992; King 1985
8.5.6	eglestonite	([Hg ¹⁺] ₂) ₃ OCl ₃ (OH)	light	surficial photo-oxidation	colour change: brown or darkens	mercury liberation	Nassau 1992; King 1985
862	chloraluminite	$AICI_3 \cdot 6H_2O$	25C, > ~40% RH	deliquescence			Waller 1992
0.0.2				hydrolysis			King 1985; Howie 1984
8.6.3	cadwaladerite	$AICI(OH)_2 \cdot 4H_2O$		deliquescence			Waller 1992
8.7.1	fluocerite-(Ce)	(Ce,La)F ₃	light	colour change	yellowish- or reddish-brown		O'Donoghue 1983
8.8.17	bideauxite	Pb ₂ AgCl ₃ (F,OH) ₂	high light levels	colour change	pale lavender		Howie 1984
8.10.1	scacchite	MnCl ₂	25C, > ~56% RH	deliquescence			Waller 1992
9 10 2	chloromanganokalite	K₄MnCl₅		deliquescence		decomposes easily	Waller 1992; O'Donoghue 1983
0.10.5				efflorescence			Howie 1984
Q 11 1	molysite	FeCl ₃	25C, > ~5% RH	deliquescence			Waller 1992; Hazen & Ausubel 2016
0.11.1				hydrolysis		to hydrous iron oxide	King 1985
8.11.2	hydromolysite	FeCl₃ · 6H₂O	25C, > ~5% RH	deliquescence			Waller 1992
8.11.3	rokühnite	$FeCl_2 \cdot 2H_2O$	moist air	hydration		to higher hydration states	Waller 1992
Q 11 /	douglasite	$K_2Fe^{2+}CI_4 \cdot 2H_2O$		deliquescence			Waller 1992; King 1985
0.11.4				efflorescence			Howie 1984

Next Steps

additional data
 new entries
 further references
 other organizational systems

more permanent location
 own website
 part of pre-existing database

> enhance usability & interactivity

- ➤ aid search
- increase information available per mineral
- pictures exemplifying deterioration

► MSD Submission Form @ http://mineralcare.web.ox.ac.uk/database

 \cap r ▶email: <u>kathryn.royce@ouce.ox.ac.uk</u>

Further Information:

► Reference for Mineral Care: http://mineralcare.web.ox.ac.uk/

Thank you for listening!

The Mineral Stability Database is an output of a collaborative doctoral research project, supported by collaborators from the following institutions:

- > University of Oxford, School of Geography & the Environment Prof. Heather Viles
- > National Museum Cardiff Dr. Jana Horak, Tom Cotterell
- > National Museums Liverpool Dr. Christian Baars
- BSRIA Ltd. Tom Gagarin
- ➢ OR3D James Earl

The PhD project is part of the Science and Engineering in Arts, Heritage, and Archaeology Centre for Doctoral Training (SEAHA CDT).

Funding has been provided by:

- > The Engineering and Physical Sciences Research Council (EPSRC)
- > The Barbara Whatmore Trust
- ➤ The Pilgrim Trust
- > The National Conservation Service

