the Mineral Susceptibility Database

A new tool for communicating research outputs with the heritage sector and beyond

Kathryn Royce, D.Phil. Candidate, University of Oxford

Goldschmidt 2021, Session 14b: Science Communication in Geochemistry & Geosciences

The same and and the same and t


Geological Material...

in Heritage

- > Jewelry
- ➤ Pigments
- > Ceramics
- > Glass
- ➤ Sculpture
- > Metals

as Heritage

- > Planetary formation & evolution
- ➤ Beginning & evolution of life
- > Climate on Earth throughout time

Susceptibility

All things are susceptible to change!

- > governed by:
 - 1. ambient conditions
 - 2. physical & chemical properties
 - > conditions favourable for stability
 - response / change to unfavourable conditions
- >inherent, secondary property
- expression dependent on likelihood of exposure to an agent
- degree = likelihood x effect

"The state or fact of being likely or liable to be influenced or harmed by a particular thing"

- Oxford University Press 2021


Susceptibility in Heritage Contexts

- determines which hazards pose deterioration risks
- > informs storage & display conditions

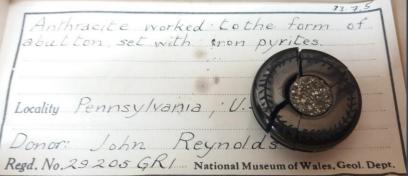
10 Agents of Change*

- ► Incorrect Humidity
- ► Incorrect Temperature
- ➤ Light (vis & UV)
- **≻**Pollutants

- ➤ Physical Forces
- **≻**Water
- **≻**Fire
- **▶** Pests
- **≻**Criminals
- ➤ Dissociation

the Indoor Environment

Parameters:

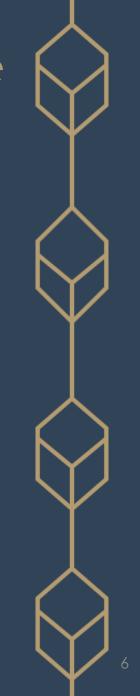

- >~1 bar
- >-20-50°C
- >0-100% RH
- > visible light & UV
- ➤ indoor pollutants: particulates, aerosols

Covers 'extremes' that could occur during:

- > equipment & infrastructure failure
- > unusual weather
- > flooding
- ➤ localised heating by spotlights

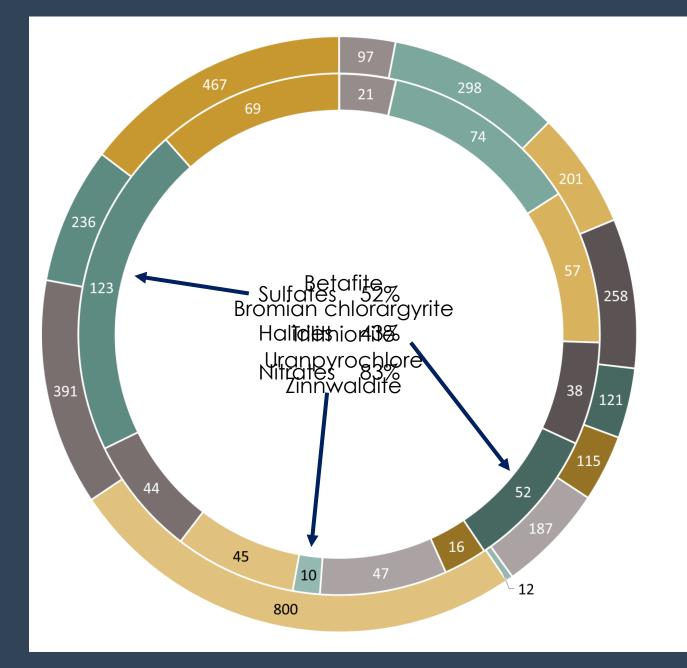
as well as buildings without insulation or HVAC

Marble specimen centre table – Ashmolean, Oxford



Mineral Susceptibility Database

- Comprehensive resource for assessing conditions required by mineral objects & collections
- Consolidates current research from various scientific fields
- One freely accessible location
 - Improve access to reliable information

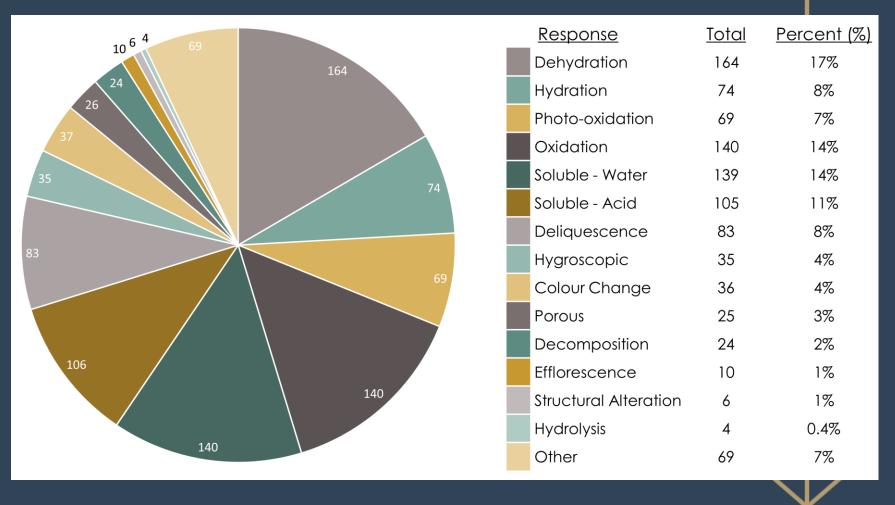

By being a repository of interdisciplinary research, the Database:

- encourages informed decision making,
- 2. increases awareness of which disciplines & institutions are performing relevant research,
- 3. exposes additional research applications & opportunities,
- 4. advocates cross-disciplinary research & communication.

Facts & Figures

- > 596 minerals
- > 987 entries
- > 10% of total mineral species
- > 17% of species in Hey's CIM
- Some mineral groups better represented than others

Outer Ring: # in Hey's CIM


Inner Ring: # in MSD

- Elements & Alloys
- Sulfides
- Sulfosalts
- Oxides & Hydroxides
- Halides
- Borates
- Carbonates
- Nitrates
- Silicates
- Phosphates
- Sulfates
- Other

Water Predominance

Entries: Agent of Change

Agent	#	%
Water	662	67
Pollutants	158	16
Light	134	14
Temperature	23	2
Oxygen	10	1

- MSD = reflection of published knowledge
 - > Hydration & oxidation state changes are common & important reactions that occur under atmospheric conditions
- > Is this a true reflection of reality?

MSD Aiding Geoscience Research

Existing entries & references evidence:


- ➤ Knowledge gaps → research opportunities
 - Reaction types & details (i.e., parameters & products)
- \triangleright Current research hotspots (e.g., sulfates \rightarrow Martian research)
 - > Institutions & individuals performing research
- > Data have practical applications within heritage sector

25.10.4	ferrohexahydrate	FeSO ₄ · 6H ₂ O		dehydration		to lower hydration states	Jambor
			25C, > 61% RH	hydration		to higher hydration states	Waller
25.10.5	melanterite	FeSO ₄ · 7H ₂ O	RT, 63-89% RH	oxidation		to fibroferrite (via copiapite a 63-80% RH)	Jerz & F
			20C, > 95% RH	deliquescence			Chou e
			20C, < 57% RH	dehydration	efflorescence	to siderotil, where Cu <	Chou e
			20C, < 65% RH	dehydration	efflorescence	to rozenite, where Cu >	Jambor
25.10.6	rhomboclase	$(H_5O_2)Fe^{3+}(SO_4)_2 \cdot 2H_2O$	25C, > 58-60% RH	deliquescence		to solution Fe ₂ (SO) ₃	Xu et al
			22-25C, 33-53% RH	alteration		to kornelite & paracoquimbite	Xu et al
				dehydration	efflorescence	to lower hydration states	Waller
25.10.8	kornelite	$Fe_{2}^{3+}(SO_{4})_{3} \cdot 7H_{2}O$	22-25C, > 43% RH	hydration		to paracoquimbite	Xu et al
25.10.9	coquimbite	AIFe ³⁺ ₃ (SO ₄) ₆ (H ₂ O) ₁₂ ·6H ₂ O	20C, >73% RH	deliquescence			Waller
			moist air	hydration		to higher hydration states	Howie:
				dehydration	efflorescence	to lower hydration states	Waller
25.10.10	paracoquimbite	$Fe^{3+}_{4}(SO_4)_6(H_2O)_{12} \cdot 6H_2O$	22-25C, < 43% RH	dehydration		to kornelite	Xu et al
25.10.11	quenstedtite	Fe ³⁺ ₂ (SO ₄) ₃ · 11H ₂ O		dehydration	efflorescence	to paracoquimbite	Waller
25.10.12	ferricopiapite	Fe ³⁺ _{0.67} Fe ³⁺ ₄ (SO ₄) ₆ (OH) ₂ · 20H ₂ O	22-25C, > 68% RH	deliquescence		to solution Fe ₂ (SO) ₃	Xu et al
			22-25C, 33-53% RH	alteration		to kornelite & paracoquimbite	Xu et al

or et al. 2000; Hyd r 1992 Rimstidt 2003 et al. 2002; Jerz 8 et al. 2002 or et al. 2000 al. 2009 al. 2009 er 1992; King 1985 al. 2009 er 1992 e 1984 er 1992; King 1985 al. 2009 er 1992; King 1985 al. 2009 al. 2009

Flexisode is des

Have any relevant research?

- MSD Submission Form @ http://mineralcare.web.ox.ac.uk/database or
- > email: <u>kathryn.royce@ouce.ox.ac.uk</u>

Further Information:

Reference for Mineral Care:
http://mineralcare.web.ox.ac.uk/

Thank you for listening!

The Mineral Stability Database is an output of a collaborative doctoral research project, supported by collaborators from the following institutions:

- ➤ University of Oxford, School of Geography & the Environment Prof. Heather Viles
- National Museum Cardiff Dr. Jana Horak, Tom Cotterell
- > National Museums Liverpool Dr. Christian Baars
- BSRIA Ltd. Tom Gagarin
- ➤ OR3D James Earl

The PhD project is part of the Science and Engineering in Arts, Heritage, and Archaeology Centre for Doctoral Training (SEAHA CDT).

Funding has been provided by:

- > The Engineering and Physical Sciences Research Council (EPSRC)
- > The Barbara Whatmore Trust
- > The Pilgrim Trust
- > The National Conservation Service

